
Non-Schlesinger deformations of ordinary differential equations with rational coefficients

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 2259

(http://iopscience.iop.org/0305-4470/34/11/318)

Download details:

IP Address: 171.66.16.124

The article was downloaded on 02/06/2010 at 08:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 2259–2272 www.iop.org/Journals/ja PII: S0305-4470(01)15467-3

Non-Schlesinger deformations of ordinary differential
equations with rational coefficients

A V Kitaev

Steklov Mathematical Institute, Fontanka 27, St Petersburg 191011, Russia
and
Department of Pure Mathematics, University of Adelaide, Adelaide, SA 5005, Australia

E-mail: kitaev@pdmi.ras.ru

Received 19 June 2000, in final form 30 January 2001

Abstract
We consider deformations of 2 × 2 and 3 × 3 matrix linear ODEs with rational
coefficients with respect to singular points of Fuchsian type which do not satisfy
the well known system of Schlesinger equations (or its natural generalization).
Some general statements concerning the reducibility of such deformations for
2 × 2 ODEs are proved. An explicit example of the general non-Schlesinger
deformation of 2 × 2-matrix ODEs of the Fuchsian type with four singular
points is constructed and application of such deformations to the construction of
special solutions of the corresponding Schlesinger systems is discussed. Some
examples of isomonodromic and non-isomonodromic deformations of 3 × 3
matrix ODEs are considered. The latter arise as the compatibility conditions
with linear ODEs with non-single-valued coefficients.

PACS numbers: 0230G, 0230H, 0230I

AMS classification scheme numbers: 34A20, 34E20, 33E30

1. Introduction

It is well known that isomonodromic deformations of the Fuchsian matrix ODE,

d�

dλ
=
(
A0

λ
+

A1

λ− 1
+

At

λ− t

)
� (1.1)

where A∞ = A0 + A1 + At is normalized to be independent of t , are governed by the system
of Schlesinger equations [1],

dA0

dt
= 1

t
[At, A0]

dA1

dt
= 1

t − 1
[At, A1]

dAt

dt
=
[

1

t
A0 +

1

t − 1
A1, At

]
. (1.2)

This system is the compatibility condition of equation (1.1) with the following ODE:

d�

dt
= − At

λ− t
�. (1.3)
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Throughout this paper we consider matrix ODEs with respect to independent variable λwhose
coefficients are rational functions of λ with at least one Fuchsian singularity at λ = t .
We call deformations of such ODEs Schlesinger (with respect to t) if these ODEs are
compatible with equation (1.3). This is a natural generalization of the notion of Schlesinger
deformations of the Fuchsian ODEs. It is clear that the Schlesinger deformations are the
simplest isomonodromic deformations. On the other hand, as follows from the work by
Malgrange [2], any isomonodromic deformation of the Fuchsian system could be described up
to isomorphism by the Schlesinger deformations. The purpose of this paper is to understand
better what ‘up to isomorphism’ means from the point of view of the theory of integrable
systems and special functions of the isomonodromy type [3]. More precisely, the question is
whether this isomorphism can be always constructed explicitly, or in other words can we obtain
any new integrable systems or special functions by considering non-Schlesinger deformations
of ODEs with rational coefficients?

The results presented in sections 2 and 3 give a negative answer to this question in the case
of the isomonodromic deformations: any integrable system which describes non-Schlesinger
isomonodromic deformations of any Fuchsian ODE (or weak non-Schlesinger (see section 2)
isomonodromic deformation for non-Fuchsian ODEs with rational coefficients) can be mapped
explicitly by a proper Schlesinger transformation into some integrable system describing
deformation of the Schlesinger type. This statement can be reformulated in the following
way: there are no new transcendental functions defined via non-Schlesinger isomonodromic
deformations of the Fuchsian ODEs. The sketch of this rather simple proof is given at the end
of section 3. It was communicated to me by Bolibruch for the case of the Fuchsian ODEs a
few weeks after the workshop where the results of this paper were reported. Moreover, he
pointed out to me his recent work [4], where he also studied non-Schlesinger deformations of
the Fuchsian ODEs but looking at them from a different angle: the isomonodromy confluences
of the Fuchsian singularities. However, Bolibruch did not study the reducibility of the ODEs
subject to non-Schlesinger deformations, which I address, in particular, in this paper. The
latter means further simplification of these ODEs. Moreover, such reducibility does not follow
from the proof mentioned above and has a remarkable consequence for construction of the
explicit solutions of the Painlevé and higher Painlevé equations, and (generalized) Garnier
type systems.

In section 4 some simplest examples of non-isomonodromic deformations of 3×3 matrix
ODEs, which are, of course, non-Schlesinger, are presented. Here for simplicity we consider
non-Fuchsian type ODEs since one of our tasks here is to show that non-isomonodromic
deformations, which can be described via compatibility conditions (generalized Schlesinger
equations), really exist. For the Fuchsian ODEs one can consider analogous examples. In our
examples, presented in section 4, there appear only elementary and Painlevé type functions.
The latter non-evident fact was established (also after the workshop) by Cosgrove. However, to
the best of my knowledge no general statements concerning reducibility of such deformations
to those of isomonodromy type are known, so further interesting studies of such deformations
are anticipated.

2. Non-Schlesinger isomonodromic deformations of 2 × 2 matrix ODEs

We begin our study with the special case of equation (1.1) whenAk ∈ sl2(C) for k = 0, 1, t and
∞. Let us suppose that A∞ = − θ∞

2 σ3, θ∞ �= 0, which is in fact (excluding one exceptional
solvable case) also a normalization rather than a restriction on Ak . In this case the system of
Schlesinger equations (1.2) is equivalent to the sixth Painlevé equation [5].

Equation (1.3) is a sufficient condition that monodromy matrices of a fundamental solution
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of equation (1.1) are independent of t . In the general situation this condition is also necessary,
but there are some special exceptional cases, which are discussed here. A possibility of
such deformations resulted from the non-uniqueness of solubility of the inverse monodromy
problem for some special monodromy matrices.

We begin with a simple generalization of equation (1.3),

d�

dt
= −At + �

λ− t
�. (2.1)

The compatibility condition of equations (1.1) and (2.1) reads

[�, At ] = � (2.2)
dA0

dt
= 1

t
[At + �, A0]

dA1

dt
= 1

t − 1
[At + �, A1]

dAt

dt
=
[

1

t
A0 +

1

t − 1
A1, At + �

]
.

(2.3)

Equation (2.2) implies tr� = 0, �2 = 0, and ±1/2 are the eigenvalues of At . Denote

At =
(
at bt
ct −at

)

then the solution of equation (2.2) can be written as follows:

� = µ

(−(at + 1/2)bt −b2
t

(at + 1/2)2 (at + 1/2)bt

)
for at �= −1/2 (2.4)

and

� = µ

(
ct 1

−c2
t −ct

)
for at = −1/2 (2.5)

where µ = µ(t) is an arbitrary function of t .
Consider now the asymptotic expansion of a fundamental solution of equation (1.1) as

λ → t ,

� =
∞∑
k=0

ψk(λ− t)k(λ− t)σ3/2

(
1 κ ln(λ− t)

0 1

)
C detC = detψ0 = 1 (2.6)

where the parameter κ = 0 or 1. One finds

At = 1
2ψ0σ3ψ

−1
0 � = (C ′

21C22 − C ′
22C21)ψ0

(
0 0
1 0

)
ψ−1

0

where C21 and C22 are the corresponding matrix elements of C and the primes denotes
differentiation on t . The monodromy matrix of � corresponding to any loop, with only
one singular point λ = t inside, reads

Mt = −I − 2π iκ

(
C21C22 C2

22
−C2

21 −C21C22

)
.

If κ �= 0 then the isomonodromy condition, d
dt Mt = 0, implies C ′

21C22 − C ′
22C21 = 0 and

therefore � = 0. Thus, in the case of 2 × 2 matrices non-Schlesinger deformations of the
type (2.1) exist if and only if κ = 0. This condition can be written in terms of equation (1.1)
as follows:

tr

((
1

t
A0 +

1

t − 1
A1

)(
At +

1

2
σ3

))
= 0. (2.7)
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Consider the explicit construction of this deformation. Taking into account the integrals of the
Schlesinger system (1.2),

At = −A0 − A1 − θ∞
2
σ3 trAk = 0 detAk = −θ2

k

4
where θt = 1 and θk , k = 0, 1 and ∞ are the constants of integration considered as parameters;
we see that the most general non-Schlesinger deformation of the type (2.1) depends on the
function µ(t) (see equations (2.4) and (2.5)) and five parameters (constants of integration
of equations (2.3)): θ0, θ1, θ∞ and c1, c2. One of them can be introduced via the gauge
transformation,

Ak −→ c
σ3
2 Akc

−σ3
2 . (2.8)

Due to the absence of the log-term in the expansion equation (2.6), the singularity at λ = t

in equation (1.1) is removable via a proper Schlesinger transformation. Let us describe this
construction in detail. Consider the hypergeometric equation, which can be written in matrix
form as follows:

d�

dλ
=
(
A

λ
−

θ∞+1
2 σ3 + A

λ− 1

)
� A =

(
− θ2

0 −θ2
1 +(θ∞+1)2

4(θ∞+1)
θ2

0 −(θ∞+1−θ1)
2

4(θ∞+1)

− θ2
0 −(θ∞+1+θ1)

2

4(θ∞+1)
θ2

0 −θ2
1 +(θ∞+1)2

4(θ∞+1)

)
. (2.9)

Note that detA = − θ2
0
4 and det( θ∞+1

2 σ3 +A) = − θ2
1
4 . An explicit formula for the fundamental

solution� = �(λ) of this equation in terms of the Gauß hypergeometric functions can be found
for example in [6]. In the following we denote as� any fundamental solution of equation (2.9)
which is independent of t . A fundamental solution of the system (1.1), (1.3), which corresponds
to the general (modulo gauge transformation (2.8)) solution of the system (2.1), (1.1) (for
θt = 1) can be written as follows:

� = D−1R−1(λ, t)� D =
(

1 1
0 κ1

)
κ1 = 4θ∞(θ∞ + 1)

(θ∞ + 1 − θ1)2 − θ2
0

(2.10)

R(λ, t) =
((

0 0
0 1

)√
λ− t +

(
1 0

c1(t) 0

)
1√
λ− t

)
detR(λ, t) = 1 (2.11)

where c1(t) is an arbitrary function of t and for both square roots in equation (2.11) the same
branch should be chosen. The corresponding solution of the system (2.2), (2.3) reads

A0 = D−1R−1(0, t)ADR(0, t) A1 = −D−1R−1(1, t)

(
θ∞ + 1

2
σ3 + A

)
DR(1, t)

At = D−1

(
1/2 0
r(t) −1/2

)
D � = D−1

(
0 0

dc1 (t)

dt − r(t) 0

)
D

(2.12)

where

r(t) = ((θ2
0 − (θ∞ + 1 − θ1)

2)c2
1(t) + (4t (θ∞ + 1)2 − 2((θ∞ + 1)2

+θ2
0 − θ2

1 ))c1(t) + θ2
0 − (θ∞ + 1 + θ1)

2){4t (t − 1)(θ∞ + 1)}−1. (2.13)

The function c1(t) depends on the function µ(t) and the parameter c1, which is introduced
in the paragraph above equation (2.8). Actually, if the function µ(t) is given, as one of the
coefficients in the system (2.2), (2.3), then

µ(t) = κ1(c
′
1(t)− r(t))

(r(t)− κ1)2
. (2.14)

The function c1(t) is thus the general solution of the differential equation (2.14) and, therefore,
depends on the constant of integration c1.
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At this stage it is worthwhile to note an application of the non-Schlesinger deformations
to the construction of one-parameter families of solutions of the sixth Painlevé equation. As
mentioned above, the sixth Painlevé equation corresponds to the Schlesinger deformation (1.3)
of equation (1.1), i.e.µ(t) ≡ 0 �⇒ c′

1(t) = r(t). The latter is nothing but the Riccati equation,
whose solution can be written in terms of the logarithmic derivative of the Gauß hypergeometric
function. An explicit formula for the solution of the sixth Painlevé equation is than easy to
obtain from the equations (2.12) and a parametrization of the solution of the sixth Painlevé
equation in terms of matrix elements ofAk given in [5]. This solution corresponds to θt = ±1.

It is important to notice that there is another construction of the one-parameter families
of the solutions of the sixth Painlevé equation; it is based on on the ‘triangular reduction’
of the system (1.1), (1.3) (the latter also leads to the hypergeometric functions, but for
θ0 + θ1 + θt + θ∞ = 0, see, e.g., [3]). These two constructions give, modulo application of
the Schlesinger transformations and fractional-linear transformations of λ, all one-parameter
families of solutions of the sixth Painlevé equation. The fact that there are no other solutions
of the sixth Painlevé equation follows from the work [7]. It is clear that application of the non-
Schlesinger deformations to the construction of the special solutions of the Garnier systems
and so-called higher Painlevé equations should ‘break the symmetry’ with the construction of
the special solutions based on the triangular reduction of the associated linear ODEs. The latter
always leads to the linear ODEs for (generally multivariable) hypergeometric functions, whilst
the construction related to the non-Schlesinger deformations leads to the Riccati equations
(for 2 × 2 matrix ODEs) which can be transformed to the linear ODEs of the second order
whose coefficients are defined by solutions of the Garnier systems (Painlevé/higher Painlevé
equations), which are junior members of the corresponding hierarchies.

The most general non-Schlesinger isomonodromic deformations of equation (1.1) are
defined by the compatibility condition of equation (1.1) with the following ODE:

∂�

∂t
=
(

−At + �t
1

(λ− t)
+

nt∑
k=2

�t
k

(λ− t)k
+

n1∑
k=1

�1
k

(λ− 1)k
+

n0∑
k=1

�0
k

λk

)
� (2.15)

where nt � 1, n1 � 0 and n0 � 0 are integers. The notation is chosen such that if �p
np = 0,

then �p

k = 0 for all k � np, and if the upper limit of the sum is less than its lower limit, then
the sum is absent. One proves that tr�p

k = 0 and (�p
np )

2 = 0 for p = t , 1 and 0. Moreover,

�p
np

�= 0 �⇒ Ap = np

2
ψ
p

0 σ3(ψ
p

0 )
−1 �p

np
= µ

p

lp
(t)ψ

p

0

(
0 0
1 0

)
(ψ

p

0 )
−1 (2.16)

the corresponding monodromy matrix at λ = p is Mp = (−1)np ; this means that the function
� has the following expansion at λ = p:

� =
∞∑
k=0

ψk(λ− p)k(λ− p)
np

2 σ3C detC = detψ0 = 1. (2.17)

It follows from this expansion that the singularity atλ = p can be removed from equations (1.1)
and (2.15) via np transformations of the type (2.10). In general, the non-Schlesinger
isomonodromic deformation defined by equation (2.15) can be parametrized via np + n1 + n0

arbitrary functions of t . More precisely: if among the ‘senior’ matrices �k
nk

, k = 0, 1 and
t , only one matrix �

p
np is different from 0, then via np Schlesinger transformations of the

form (2.10) and, possibly (if p �= t), by permutation of the points 0, 1 and t , one transforms
�, the fundamental solution of the system (1.1), (2.15), to the solution of the hypergeometric
equation (2.9) �. If any two of the ‘senior’ matrices �p

np �= 0 and �q
nq �= 0, then np + nq

Schlesinger transformations convert � to the the function � = (λ − r)−(θ∞+1)σ3/2, where
r �= p, q and r ∈ {0, 1, t}, so that in particular θr = −θ∞ − 1. Finally, if all three matrices
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�k
nk

�= 0, k = 0, 1 and t , then � can be presented as a multiplication of the nt + n0 + n1

Schlesinger transformations.
Since the consideration above is quite local this result can be generalized for 2 × 2 matrix

ODEs
d�

dλ
= A(λ)� (2.18)

where = A(λ) ∈ sl2(C) is an arbitrary rational function of λ.

Definition. Let t be a pole of A(λ) of the first order with the residue At ,

A(λ) = B(λ) +
At

λ− t
(2.19)

where B(λ) has no pole at λ = t as a rational function of λ and At is independent of λ. If a
fundamental solution of equation (2.18) satisfies also equation (1.3), then we call any solution
of the system representing the compatibility condition of equations (1.3), (2.18) and (2.19),
namely,

∂B(λ)

∂t
=
[
B(λ)− B(t)

λ− t
, At

]
dAt

dt
= [B(t), At ]

the Schlesinger deformation of equation (2.18) with respect to the parameter t .

Remark 2.1. The fourth, fifth and sixth Painlevé equations can be written as the Schlesinger
deformations of 2 × 2 matrix linear ODEs.

Definition. Denote by t1 any other first-order pole of the rational functionA(λ); in particular,
it may coincide with t . We say that isomonodromic deformation with respect to t is t1-non-
Schlesinger iff the rational function R(λ) in the equation

d�

dt
=
(

− At

λ− t
+ R(λ)

)
� (2.20)

has a pole at λ = t1.

Proposition 2.1. Any t1-non-Schlesinger deformation of equation (2.18) with respect to t can
be transformed, by a finite number of the Schlesinger transformations of the type given by the
first equation (2.10) where t → t1 and the matrix D is independent of λ, to the ODE of the
form

d�̂

dλ
= Â(λ)�̂ (2.21)

where the rational function Â(λ) ∈ sl2(C) has no pole at λ = t1 whilst its other poles and
their orders coincide with those of the function A(λ).

Moreover, if, additionally, the function A(λ) is isomonodromic with respect to t1, namely,

d�

dt1
=
(

− At1

λ− t1
+ R1(λ)

)
� (2.22)

and the set of poles (∈CP
1) of the rational function R1(λ) coincides with a subset (∈CP

1)

of the first-order poles of the function A(λ), then, possibly by applying a finite number of
additional Schlesinger transformations of the type described in the previous paragraph, one
arrives at equation (2.21), where the function Â(λ) is independent of t1 (note that if t1 = t ,
then R(λ) = R1(λ) has a pole at λ = t). The set of poles of Â(λ) is a subset of the poles
of A(λ).
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Remark 2.2. We call the non-Schlesinger deformations described in the second paragraph
of proposition 2.1 weak non-Schlesinger deformations. If one allows that among the
poles of R1(λ) there are some non-Fuchsian singularities of equation (2.18), then such
isomonodromic deformations could be called strong non-Schlesinger deformations. For the
strong non-Schlesinger deformations the latter statement of proposition 2.1, in general, is not
true.

If we suppose that equation (2.18) suffers from some weak non-Schlesinger deformation
with respect to t and R(λ) (see equation (2.20)) has no pole at λ = t , then, by applying
proper Schlesinger transformations, equation (2.18) can be simplified to equation (2.21) with
the matrix Â(λ) having fewer poles than A(λ) and the Schlesinger t-dependence.

3. Non-Schlesinger isomonodromic deformations of 3 × 3 matrix ODEs

In the case when the 2 × 2 matrix ODE (2.18) with the connection matrix (2.19) suffers from
weak non-Schlesinger isomonodromic deformations with respect to t , it is always reducible
via the Schlesinger transformations to a simpler ODE with a less number of poles; this is not
always the case for the ODEs of higher matrix dimension. For example, one can take a direct
sum of two 2 × 2 equations of the type (1.1): coefficients of the first equation are deformed
by the Schlesinger deformation (1.3), whilst coefficients of the second one suffer from a non-
Schlesinger deformation of the type (2.1). Clearly, we have constructed a non-Schlesinger
isomonodromic deformation of the 4×4 ODE with respect to t which (in the general situation)
cannot be reduced via any Schlesinger transformation to any equation independent of t .
However, it can be transformed (via an appropriate Schlesinger transformation) to the equation
for which deformation with respect to t is of the Schlesinger type, so the natural question is
whether there are any non-Schlesinger isomonodromic deformations of equation (2.18) which
are not reducible via Schlesinger transformations to the Schlesinger deformations of some
other ODE of the same type (2.18).

Consider the simplest non-Schlesinger isomonodromic deformation of equations (2.18)
and (2.19) of the type (2.1) for the case of 3×3 matrices. Equation (2.2) now implies tr� = 0
and �3 = 0. Using this one finds that the only possible solutions of equation (2.2) read

(1) At = ψ0

( 1 0 0
0 0 0
0 0 −1

)
ψ−1

0 � = ψ0

( 0 0 0
µ1(t) 0 0

0 µ2(t) 0

)
ψ−1

0 (3.1)

(2) At = ψ0

( 1/3 0 0
0 1/3 0
0 0 −2/3

)
ψ−1

0 � = ψ0

( 0 0 0
0 0 0

µ1(t) µ2(t) 0

)
ψ−1

0 (3.2)

(3) At = ψ0

( 1/3 1 0
0 1/3 0
0 0 −2/3

)
ψ−1

0 � = ψ0

( 0 0 0
0 0 0
0 µ2(t) 0

)
ψ−1

0 (3.3)

(4) At = ψ0

( 2/3 0 0
0 −1/3 0
0 0 −1/3

)
ψ−1

0 � = ψ0

( 0 0 0
µ1(t) 0 0
µ2(t) 0 0

)
ψ−1

0 (3.4)

(5) At = ψ0

( 2/3 0 0
0 −1/3 1
0 0 −1/3

)
ψ−1

0 � = ψ0

( 0 0 0
µ1(t) 0 0

0 0 0

)
ψ−1

0 . (3.5)

The matrix ψ0 is a function of t with detψ0 = 1; µ1(t) and µ2(t) are some functions of t .
Actually, from the system (2.3) it follows that for any choice of the functions µk(t) there is a
solution of the system (2.3). This means that the general solution in each case depends on two
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(cases 1, 2 and 4) or one (cases 3 and 5) arbitrary functions of t . The functionsµ1(t) andµ2(t)

may also depend on some other pole parameters (if any).
Consider the first case. Any fundamental solution at λ = t has the following asymptotic

expansion:

� =
λ→t

∞∑
k=0

ψk(λ− t)k

(
λ− t 0 0

0 1 0
0 0 1/(λ− t)

)
(λ− t)#C (3.6)

# =
( 0 κ2 κ1

0 0 κ3

0 0 0

)
detC = detψ0 = 1 (3.7)

where κl , l = 1, 2, 3, are parameters independent of t . Denote

Q = C ′(t)C−1(t) ⇒ trQ = 0.

Now using expansion (3.6) one proves that

d�

dt
=
(

�2

(λ− t)2
− At + �

λ− t

)
� (3.8)

�2 = ψ0

( 0 0 0
0 0 0
Q31 0 0

)
ψ−1

0 � = −ψ0

( 0 0 0
Q21 0 0

0 Q32 0

)
ψ−1

0 (3.9)

where Qik are matrix elements of Q and At is given by equation (3.1). In fact, equation (2.1)
is a special case of equation (3.8) corresponding to the case Q31 = 0. The monodromy matrix
of the fundamental solution with expansion (3.6) corresponding to a small loop around λ = t

reads

Mt = C−1e2π i#C

so the isomonodromy condition, d
dt Mt = 0, is equivalent to

[Q, e2π i#] = 0. (3.10)

The result of the analysis of equation (3.10) can be formulated as the following

Proposition 3.1. In a generic situation, i.e. ν(t) = Q31 �= 0 or ν(t) = Q31 = 0 but
µ1(t)µ2(t) = Q21Q32 �= 0, the isomonodromy condition (3.10) implies # = 0; therefore,
there is a Schlesinger transformation which transfers equation (2.18) with the Fuchsian
singularity at λ = t into an equation of the same type but without this singularity.

If ν(t) = 0, µ2(t) = 0 but µ1(t) �= 0, then κ2 = 0. If ν(t) = 0, µ1(t) = 0 but µ2(t) �= 0,
then κ3 = 0.

Remark 3.1. In each of the two last cases of proposition 3.1 there are some further necessary
conditions on Q, following from equation (3.10), which allow us to have # �= 0. The
question is whether these conditions are sufficient, namely, can one construct a non-Schlesinger
isomonodromic deformation of the type (2.1) for some ODE of the form (2.18) such that
equation (3.10) is satisfied and the matrix # �= 0, is opened?

The analysis of cases 2 and 4 (see equations (3.2) and (3.4)) essentially repeats the previous
one. Some minor modifications, say, for case 2 are as follows. Matrix �2 = 0, µ1(t) = Q31

and µ2(t) = Q32. Instead of expansion (3.6) we have

� =
λ→t

∞∑
k=0

ψk(λ− t)k

(
(λ− t)

1
3 0 0

0 (λ− t)
1
3 0

0 0 (λ− t)−
2
3

)
(λ− t)#C (3.11)
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where the matrices# andC have the same properties as those in (3.7). The monodromy matrix
around λ = t readsMt = e2π i/3C−1e#C, therefore the isomonodromy condition again reduces
to equation (3.10), so the part of proposition 3.1 for ν(t) = 0 and remark 3.1 apply also for
cases 2 and 4 without any modifications.

Minor modifications are required also in the remaining cases 3 and 5 (see equations (3.3)
and (3.5)). In case 3 expansion of the function � at λ = t is just a special case of the
expansion corresponding to case 2 (3.11) in which κ1 = 0 and κ2 = 1 see [8]. The non-
Schlesinger condition µ2(t) = Q32 �= 0 implies κ3 = 0. Similarly, the non-Schlesinger
condition in case 5, i.e., µ1(t) = 0, leads to the condition κ1 = 0, κ2 = 0 and κ3 = 1. In these
cases the log-terms in the corresponding asymptotic expansions remain, so these singularities
definitely cannot be removed via Schlesinger transformations.

Nevertheless, in cases 3 and 5 one can transform the non-Schlesinger deformations (2.1) to
the Schlesinger form (1.1) via the Schlesinger transformations, although in this case one cannot
reduce the number of poles in the transformed version of equation (2.18) as can be done in the
other cases considered above. Actually, the idea of this proof1 is quite simple and works for
general weak non-Schlesinger deformations of equation (2.18) in n×nmatrices. However, to
avoid long introduction of the notation, I will explain it by using the redundant notation, which
has already been introduced. Suppose that equation (2.20) defines some weak non-Schlesinger
deformation of equation (2.18). Denote by {t1, . . . , tm} the set of poles of the function R(λ).
One of them may coincide with t and simultaneously they belong to the set of the first-order
poles of equation (2.18). Note that t1, . . . , tm are not supposed to be the first-order poles of
R(λ). Denote byC1(t), . . . , Cm(t) and#1, . . . , #m the matrices defining pole expansions (the
matrices likeC(t) and# in equations (3.6) and (3.11)) of the solution� at the points t1, . . . , tm,
respectively. The matrices Ck(t) may also depend on some other parameters, in particular, on
tk , whilst the upper nilpotent matrices #k are chosen to be constants. The key observation
is that the matrices Ck(t)C

−1
k (t0), where t0 /∈ {t1, . . . , tm} is any point chosen such that all

matrices Ck(t0) are invertible, commute with #k . This fact follows from the isomonodromy
condition: for any monodromy matrix Mk(t) = Mk(t0). The inverse monodromy problem at
t = t0 is solvable, since it is supposed that the matricesCk(t0) exist; therefore, we can construct
the Schlesinger deformation with the same monodromy data as for the function �, but with
Ck(t) → Ck(t0). This fact follows from the solubility of the Cauchy problem at t = t0 for
the (generalized) Schlesinger system for the coefficients of equation (2.18). Now, denote by
�S the solution corresponding to the Schlesinger deformations of equation (2.18). Consider
analytic properties of ��−1

S as the function of λ ∈ CP1 and prove (Liouville theorem) that it
is a rational function of λ (here the commutativity Ck(t)C

−1
k (t0) with #k is used). Therefore,

� and �S are related by some Schlesinger transformation.
It is an interesting problem to classify all cases when a weakly non-Schlesinger

equation (2.18) in n × n matrices can be reduced to a simplified equation of the same type
which is either independent or ‘Schlesinger’ with respect to the corresponding parameter(s).

4. Some examples of non-isomonodromic deformations of 3 × 3 matrix ODEs

It is easy to see that any function � which solves equation (2.18) with the rhs given by
equation (2.19), where B(λ) is a rational function of λ holomorphic at λ = t , and depends
isomonodromically on the parameter t , also satisfies the equation

d�

dt
= U(λ, t)� (4.1)

1 For the Fuchsian systems the idea of the proof was communicated to me by Bolibruch.
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where U(λ, t) is a rational function of λ. At the same time there are some deformations
of equation (2.18) which are defined by equation (4.1) with a non-rational matrix U(λ, t),
so that these deformations are non-isomonodromic. One interesting example of the non-
isomonodromic deformations is considered in [9]. In that example, the non-rational
contribution to the matrix U(λ, t) is proportional to the identity matrix and therefore
reducible to isomonodromic deformations of the Schlesinger type via λ-independent gauge
transformations. Here, we consider some simplest examples of the non-isomonodromic
deformations for the following 3 × 3 matrix ODE:

d�

dλ
=
(
A0

λ
+

A

λ− t
+

(
θ 0 0
0 θ 0
0 0 −2θ

))
� (4.2)

where θ is a parameter. Non-isomonodromic deformations considered below are also reducible
to the isomonodromic ones; however, these reductions less straightforward as in the example
given in [9].

The first deformation is defined by the following ODE:

d�

dt
=
(

− A

λ− t
+ P ln(λ− t)

)
� P =

( 0 1 0
1 0 0
0 0 1

)
. (4.3)

Denote

U = A0 + A + = diag{θ, θ,−2θ}
then the compatibility condition of equations (4.2) and (4.3) reads

PA0 = A0P PU = UP P+ = +P (4.4)

A′
0 = 1

t
[U,A0] U ′ = P + [+,U − A0]. (4.5)

The solution of the system (4.4) and (4.5) can be written as follows:

A0 =
(

a1(t) a1(t) + θ1 a3(t)

a1(t) + θ1 a1(t) a3(t)

a2(t) a2(t) −2a1(t)− θ2

)

U =
(

θ4 t + θ5 u3(t)

t + θ5 θ4 u3(t)

u2(t) u2(t) t + θ0 + θ4 + θ5

)

where θk , k = 0, . . . , 5, are parameters and

4a1(t) + θ1 + θ2 =
√
θ2

3 − 8a2(t)a3(t) a3(t) = −u′(τ )

2
√

2
eτ a2(t) = v′(τ )

2
√

2
e−τ

u3(t) = u(τ)

2
√

2
eτ u2(t) = v(τ)

2
√

2
e−τ τ = 3θt.

The functions u = u(τ) and v = v(τ) satisfy the following system:

τu′′ = u

√
θ2

3 + u′v′ − (θ0 + τ)u′ (4.6)

τv′′ = v

√
θ2

3 + u′v′ + (θ0 + τ)v′. (4.7)

This system can be reduced to one ODE of the second order. To prove this let us define
auxiliary variables,

f = uv g =
√
θ2

3 + u′v′ h = u′v − v′u.
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One finds the following equations:

f ′ = 2τg′ h′ = −2(θ0 + τ)g′ τh′ = −(θ0 + τ)f ′

f ′2 = h2 + 4(g2 − θ2
3 )f 2θ0g + f + h = κ

(4.8)

where κ is the constant of integration. By excluding the function h we arrive at the following
system of ODEs:

τ((τg′)′ − g2 + θ2
3 ) + 1

2 (θ0 + τ)(κ − 2θ0g) = 1
2 (2g + θ0 + τ)f

(τg′)2 = 1
4 (κ − 2θ0g − f )2 + (g2 − θ2

3 )f.
(4.9)

Finding f from the first equation and substituting it into the second one, we obtain an ODE
for the function g which is quadratic with respect to the second derivative. This equation can
be solved in terms of the fifth Painlevé transcendent: the following derivation of this fact is
due to Cosgrove.

First, observe that f can be eliminated to give the following second-order second-degree
differential equation for g:

(τ 2g′′ + τg′ + 2g3 + 3θ0g
2 − (κ + 2θ 2

3 )g − θ0θ
2

3 )
2

= (2g + τ + θ0)
2(τ 2(g′)2 + (g2 − θ 2

3 )(g
2 + 2θ0g − κ − θ 2

3 )). (4.10)

Equations gauge equivalent to (4.10) were known to Chazy [11] and Bureau [12]. The singular
integral is immediately apparent: if the last factor on the rhs is set to zero, then the lhs also
vanishes and g(τ) becomes an elliptic function of the variable log τ .

To obtain the general integral, first observe that g′′ can be eliminated between the first
equation in (4.9) and the derivative of the second. The result can be factorized as

(f ′ − 2τg′)(f + 2g2 + 2θ0g − κ − 2θ 2
3 ) = 0. (4.11)

The second factor yields the singular integral again. The first factor, which will lead to the
general integral, vanishes when we express f and g in terms of an auxiliary variable H(τ)
according to

f = −4(τH ′ −H)− θ 2
0 g = −2H ′ − 1

2θ0. (4.12)

When f and g are eliminated in favour of H , we obtain the following second-order
second-degree equation:

τ 2(H ′′)2 = −4(H ′)2(τH ′ −H) + A1(τH
′ −H)2 + A2(τH

′ −H) + A3H
′ + A4 (4.13)

where

A1 = 1 A2 = 1
4 (3θ

2
0 + 4θ 2

3 + 2κ) A3 = 1
2θ0(θ

2
0 + κ)

A4 = 1
16 ((θ

2
0 + κ)(3θ 2

0 + κ) + 4θ 2
0 θ

2
3 ).

Equation (4.13) or a gauge-equivalent version appears in several references, including [10–12].
We have presented it in the standard form of equation (SD-I.b) in [10]. Its general solution is

H = 1

4w

(
τw′

w − 1
− w

)2

− 1

4
(θ 2

0 + θ 2
3 + κ)(w − 1) +

θ 2
3 (w − 1)

4w

+
θ0τ(w + 1)

4(w − 1)
− τ 2w

4(w − 1)2
(4.14)

where the variable w(τ) is any solution of the Painlevé-V equation,

w′′ =
(

1

2w
+

1

w − 1

)
(w′)2 − 1

τ
w′ +

(w − 1)2

τ 2

(
αw +

β

w

)
+
γw

τ
+
δw(w + 1)

w − 1
(4.15)



2270 A V Kitaev

having parameters

α = 1
2 (1 + σ)2 where σ := ±

√
θ 2

0 + θ 2
3 + κ

β = − 1
2θ

2
3 γ = θ0 δ = − 1

2 .

The Schlesinger and Lukashevich transformations admitted by the Painlevé-V equation induce
corresponding symmetries in thef, g-system (4.9). One of these, which is easily found directly,
is the involution,

f → f − 2θ3(θ3 + σ)− κ g → g + 1
2 (θ0 − θ3 − σ) σ → 1

2 (θ0 − θ3 + σ)

θ0 → θ3 + σ θ3 → 1
2 (θ0 + θ3 − σ) κ → (θ0 − 2θ3)σ − θ 2

0 − θ0θ3 − 2θ 2
3 − κ.

As is well known, there are several classes of Painlevé-V equations that can be transformed
into the Painlevé-III equation,

u′′ = (u′)2

u
− u′

τ
+ α̃u3 +

β̃

τ
u2 +

γ̃

τ
+
δ̃

u
. (4.16)

The case θ0 = κ = 0, with θ3 arbitrary, is one such example. In terms of an auxiliary variable
p(τ), we have

f = p2 g = τp−1(p′′ − 1
4p) (4.17)

where p satisfies the second-order second-degree equation,

τ 2
(
p′′ − p

4

)2
= p2

(
(p′)2 − p2

4
+ θ 2

3

)
. (4.18)

Equation (4.18) is a special case of an equation appearing in [10–12]. Its solution is given by

p = τu−1(u′ + u2 − 1
16 ) (4.19)

where u(τ) is any solution of the Painlevé-III equation (4.16) with parameters

α̃ = 1 β̃ = −(1 ± 2θ3) γ̃ = 1
16 (1 ± 2θ3) δ̃ = − 1

256 .

The involution u → 1/(16u) induces the reflection p → −p, which leaves f and g invariant.
The above involution admitted by f and g induces a similar Painlevé-III solution of the f, g-
system having κ = −θ 2

0 and θ3 = 0.
Of course, we can choose the more general form of the matrix P in these examples; in

particular it is clear that everything goes through for P −→ µ(t)P where µ(t) is an arbitrary
function. This will lead to a generalization of equation (4.9) which contains the function µ(t).
However, most likely the latter equation will be again equivalent to the fifth Painlevé equation,
since as is shown in the work [10] the class of equations quadratic with respect to the second
derivatives and solvable in terms of the Painlevé transcendents contains equations with the
coefficients depending on some arbitrary functions which are not removable by simple scaling
transformations.

An explanation of the appearance of the Painlevé transcendents in the description of
the non-isomonodromic deformations is that these deformations preserve some subset of the
monodromy data of equation (4.2). More precisely, the transformation � = Q�̃, where the
matrix

Q =
( 0 1 1

0 1 −1
1 0 0

)

diagonalizes P , Q−1PQ = (1, 1,−1), transforms system (4.2), (4.3) to the block form,( ∗ ∗ 0
∗ ∗ 0
0 0 ∗

)
.
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Therefore, denoting Â and Â0 2 × 2 minors with non-vanishing elements of the matrices
Q−1AQ and Q−1A0Q correspondingly, one finds that vector �̂, formed with the first two
components of the vector �̃, solves the following system of 2 × 2 ODEs:

d�̂

dλ
=
((−2 0

0 1

)
+
Â0

λ
+

Â

λ− t

)
�̂

d�̂

dt
= − Â

λ− t
�̂. (4.20)

As is well known from [5] the monodromy data of fundumental solutions of system (4.20)
are independent of t and corresponding isomonodromic deformations of its coefficients are
governed by the fifth Painlevé equation. This is another derivation of the relation of the
system (4.9) with the fifth Painlevé equation.

Another deformation of equation (4.2) can be defined as follows:

d�

dt
=
(

− A

λ− t
+ P1(λ− t)α

)
� P1 =

( 0 1 0
0 0 0
0 0 0

)
. (4.21)

The compatibility condition of (4.21) with (4.2) reads

[+,P1] = [A0, P1] = 0 [A1, P1] = αP1 (4.22)

A′
0 = 1

t
[A1, A0] A′

1 = 1

t
[A0, A1] + [+,A1]. (4.23)

In the case of 3 × 3 matrices the system (4.22), (4.23) reduces to the equation for the confluent
hypergeometric functions; for higher matrix dimensions it is a system of nonlinear ODEs.

One can consider non-isomonodromic deformations of equation (4.2) more complicated
than (4.3) and (4.21) by adding into the rhss of these equations some further terms (such as
log2). I believe that such non-isomonodromic deformations require further study. In particular,
a combination of the non-Schlesinger terms, the terms considered in this and the previous
sections, could possibly lead to non-Painlevé-type equations.
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